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ABSTRACT

We consider a controlled system
I

x f(xu)

exhibiting a self excited periodic solution x(t) for u(t) 2 0 and consider

the question of modification of this orbit to a controlled periodic solution

x(t) corresponding to a control u(t) chosen so as to minimize a cost

functional of the form

A

T0

A
where T is the period of the controlled periodic solution. Some relevant

applications are cited.
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SIGNIFICANCE AND EXPLANATION

Great pains have been taken to make Section I of this paper an

explanation of the background and significance of the work. This is

particularly true of the first three pages of the section. This material

requires minimal technical background and is recommended to the reader wishing

to appreciate the basic ideas of the paper without getting too involved in the

technical material.

I C -. - . .

AF

I k

The responsibility for the wording and views expressed in this descriptive
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OPTIMAL ORBITAL REGULATION IN DYNAMICAL SYSTES8

SUBJECT TO HOPF BIFURCATION

David L. Russell

1. Introduction. Many systems involving self-excited, nonlinear oscillations

can be usefully modelled by a system of the form

x - A(e)x + B(O) (y) + D(M)u , (1.1)

Y

x e En , u e E
m

y + Y(O,y); + k(8)y - c(e) x + e(8)u , (1.2)

y scalar.

The first system (1.1) in which A(), B(8), D(8) are matrices of dimension

n x n, n x 2, n x m, respectively, represents a linear oscillator of some

sort with a degree of internal damping, i.e., the eigenvalues of A(S) have

negative real parts for all values of the parameter e under consideration.

The scalar second order equation (1.2) in y represents a nonlinear

oscillator. In it c(e), e(G) are vectors of dimension n, m, respectively,

*
and denotes transpose. In most cases the uncoupled equation

y + Y(e,y)y + k(e)y - 0 (1.3)

has y - y - 0 as an asymptotically stable critical point for 0 in some

range, say 0 4 6 < 00, that critical point becoming unstable for > 0

Typically the term Y(8,y)y takes the form

Sponsored by the Air Force Office of Scientific Research under Grant No.
APOSR 79-001 and the United States Army under Contract Wo. DAAG29-80-C-0041.

Department of Mathematics and Mathematics Research Center, University of
Wisconsin, Madison, WI 53706.
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" Y0  Y y() + Y(B,y)y
where Y > 0, ey (e) > 0, 8 g 0. The higher order terms represented by

A*
Y(B,y); provide strong restoring forces when y is large. The familiar

consequence, amply documented in the literature (see, e.g., [A], [B], (C]) is

that for 8 > 80 (1.3) has a stable periodic solution expanding rapidly away

from the origin (0,0) as 8 increases beyond 00.

The uncontrolled coupled system ((1.1), (1.2) with u 0) typically

involves a matrix B(8) which is rather small, so that the matrix describing

the linearization at the origin,

A(O) B(e)
c(8). -. ) (1.4)

be n un(s) - YO + Y1(
e

is nearly lower block triangular and is a stability matrix for 9 < 81f

becoming unstable for e > e,, where e,, the bifurcation point, is near the

8 value already discussed for (1.3). The system (1.1), (1.2) then likewise
0

exhibits a stable periodic solution for e > 8, lying close to the y, yII
plane for e near 81.

One of the simplest examples is the Rartlen-Curry model ([D]) for aero-

dynamically induced flutter of a long elastic rod.of circular cross section as

shown schematically in Figure 1.1. A stream of fluid, e.g., air, flows past

the rod with velocity V. For a certain "flutter speed", V0 , the fluid flow

is steady for V < V0. For V > V0  the fluid flow is no longer steadyl

alternating vortices form in the wake behind the rod, producing a near-

periodic force of alternating direction with a frequency, dependent on V,

which is known as the Strouhal frequency. The Hartlen-Curry model uses

-2-
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equations of the form (cf. 1E])

2
x + Ox + Ox &V y

y + (a- QV) + ;3 + 8v2 y b;V

to describe the self-excited oscillations of the coupled system for V > V 0

(V0 is slightly greater than 0/0). Typically 0, 3, 0, 0, b are rather

small quantities.

Figure 1.1 Oscillations of a rod with
circular cross section.

A more complicated example, for which we will not write out the equations

in detail, is of considerable interest in flight dynamics. It is rather

similar to the example just presented for the rod with circular cross section,

except that we now envision a wing cross-section immersed in the flowing fluid

as shown in Figure 1.2. The displacements shown in the figure are, of course,

exaggerated by comparison with actual operating levels (one hopes).

-3-
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Figure 1.2

Here z represents the vertical displacement of the wing tip, T is the

torsional displacement of the wing at the tip, and, again, y is the vortex

strength measured at the trailing edge of the wing. One obtains here a six

dimensional system

'r - f(z,z,TT,y,y,U,V)
I a = ~~~~tyyuV

y - h(zzTTyyUV)

exhibiting self excited oscillations much as in the Hartlen-Curry case with

added features, such as divergence of the periodic solution to infinity at

certain parameter values for V.

The initial oscillations arising in systems of this sort are, at least

insofar as the x component (cf. (1.1), (1.2)) is concerned, of rather small

amplitude. The exception which causes greatest concern occurs when the

nonlinear oscillator equation (1.3) has a periodic solution whose frequency is

close to one of the natural frequencies of vibration of the linear elastic

system modelled by x - A(O)x. When this situation obtains, quite dramatic

increases in amplitude may result in (1.1), (1.2). Figure 1.3 shows,

qualitatively, the sort of results that one obtains with a Hartlen-Curry type

model.

-4-
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Figure 1.3

Among other things, control may be used in (1.1), (1.2) to increase the

range of parameter values e for which the origin is asymptotically stable,

i.e., to increase e and/or to modify the nature of the oscillations which

. do occur for 0 > 9 - by suppressing the amplitude of those oscillations, forY1

example.

The traditional mode of control is linear feedback, the general form of

which, for (1.1), (1.2) would be

u - x +L , (1.5)
~y

* possibly with gains scheduled so that K - K(O), L - L(O). It will be

recognised, however, that direct measurement of y, y will often, perhaps

usually, be impractical. Certainly the measurement of the vortex strength at

the trailing edge of a wing would require a sensory tour de force. So, ir

practice, (1.5) must ordinarily be modified to

-5-
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u = * (1.6)

When one investigates how (1.6) affects (1.4), one sees that the result is to

replace that matrix by

:M D(O) K [ e )-T
0 1(c(O)* + elel*K k() -O+Y(

then 1.7) sosimlar (t

0

On ema i stae t i The la sica theudati trxeu io

r)-Tr - 0 (1.e)
IC

has ay unifye solutin T adianiesyapiof the imp mticitquauncto

then (1.7) is similar to

cyu i C CT + F l e ly t

erm C > 0  r is unstable and it may be assumed that X in selected so that

rqremains stable. mt is then classical that

AT - Tr + B. - 1oo

-: has a unique solution T and an easy application of the implicit function

~theorem shows that for small B (1.8) has a unique solution near the solution

]: of (1.10). moreover, as 9 tends to zero, T tends to zero. Niow our

capability to influence the eiganvalues of cT + r lies entirely in the

term CT appearing in (1.9). If B is quite small, large changes in K are

required to produce modest changes in T. It follows that when a in small,

as is commonly the case, it will be difficult to materially affect the

oigenvalues which are responsible for the bifurcation phenomena, i.e., the

-6-



eigenvalues of CT + r. This means that restricted feedback of the form (1.6)

is not likely to be very effective in extending the range of values of 0 for

which the origin remains asymptotically stable.

It may be argued that feedback of the form (1.5) may be very nearly
0

realized through the use of a state estimator ([FI) for y, y. However, it in

likely that the estimation will be very difficult in practice because, when

D is near 0, y, y are nearly unobservable via measurements on x and,

moreover, the oscillations of (1.2) necessarily take place in a region where

the nonlinear terms appearing there balance the linear terms, "energy wise",

and hence are of comparable magnitude. Then one is trying to construct a

state estimator for nearly unobservable, nonlinear phenomenal a rather heroic,

not to say Sisyphic, task.

It follows that if linear feedback is to be used, it will take the form

1.6) and the main benefit will be realized through choosing K so that the

term B(U) (Y) in (1.1) affects x minimally in some appropriate sense. For
y

example, the eigenvalue of A(e) + D(e)K corresponding to the fundamental

mode of vibration can be moved further to the left in the complex plane or its

imaginary part can be increased so that resonance occurs at higher

frequencies, thus, in effect, pushing the "spike" of Figure 1.3 to the right.

The main point, insofar as our current discussion is concerned, is that one

must, in effect, concede that oscillation is going to take place and then take

a steps to modify or suppress the manifestations of such oscillations in the

system represented by (.1).

Having seen that we may as well admit from the first that a self-excited

periodic motion will be present in the operating system, we may as well cite

this as an excuse and an opportunity to deal directly with such solutions as

0 -



we attempt regulation of the system (.1), 2). our purpose in this paper

is to discuss the optimal regulation of periodic solutions of systems of this

type, primarily with a view toward amplitude suppression.

In Sections 2, 3 we study a general system (wherein e is suppressed

until needed)

- f(x,u) (1.11)

for x 6 O, an open set in Tn , and u 6 Em. Most of our results are

actually obtained in the context of the specialized systems of the form

x - g(x) + HWxlu

. Our objective is to show the existence of, and to characterize, in terms of
A, A

necessary conditions, state and control pairs x, u such that x is periodic

A A
with period T and such that X, minimize, relative to an appropriate

family of state and control pairs x, u (x with period T), a cost

functional of the general form

J(x,u,T) -- w(x(t), u(t))dt • (1.12)

In Section 2 we begin by supposing that the uncontrolled system

- f(x,O)

has a periodic solution with period To  and then obtain some local existence

results ensuring the existence of an optimal control, at least in an

appropriate local sense. Then in Section 3 we indicate the form of the

necessary conditions, some computational methods and describe some

computational work already undertaken, concluding with an indication of work

in progress and envisioned for the future.

-8-



2. Local Existence of a Solution for the Periodic Optimal Control Problem

in our study of existence questions we will confine attention to systems

in which the control appears linearly:

; - f(x,u) - g(x) + H(x)u , (2.1)

wherein it is assumed that, for some open subset O C 1n ,

g : 0 + Rn, H t 0 + Rnm

are defined and continuously differentiable throughout 0. Here Rne denotes

the space of n x m matrices with real entries. The differentiability of f

with respect to both x and u for x e 0, u e RP, is then clear.

Our basic assumption is that the "uncontrolled" system

- f(x,O) - g(x) (2.2)

has a solution x(t) which is periodic with least positive period T0.

Beyond that we are concerned with the variational system based on x(t),

which is

- G(x(t))g + H(x(t))u , (2.3)

G(x(t)) - (x(t)) (Jacobian of g w.r. to x).

We denote by *(t,s) the fundamental matrix solution of

30(ts) - G(x(t))O(t,s) (2.4)

(s,s) - I (n x n identity matrix) (2.5)

and abbreviate (t,O) by O(t). Both (2.3) and (2.4) may be taken to be

defined for all real t if we extend x(t) in the obvious way by

periodicity. The resulting systems are periodically dependent on t with

period To. The period transition map associated with the periodic solution

x(t) Is the map defined by the matrix (T 0).
09



Since the system (2.2) is autonomous, we may stipulate any point on the

solution x(t) as the initial point x0 - x(O). The assumption that x(t)

is a non-trivial periodic solution enables one to see readily that

Pa X(o) - g(x0 ) o . (2.6)

It is well known that p, is an eigenvector of *(T ) corresponding to the

eigenvalue A, I of O(T 0). This is an imediate consequence of the fact10

that

E(t) x(t) f(t)p

is a periodic solution of G(x(t))&. We assume that the remaining n - 1

eigenvalues of *(T ), which we denote by )2,..., are all different from
0 2

1. An important special case arises when

i # i m 2,3,...,n (2.7)

in which case the periodic solution x(t) of (2.2) is locally asymptotically

stable. The condition (2.7) Is not needed in this section but becomes very

important in numerical considerations to be introduced later.

We denote by (p1
} the one dimensional subspace of Rn  spanned by p1

and by P the (n-1)-dimensional subspace spanned by the (possibly

generalized) eigenvectors P2, P3I***IPn of *(T0) associated with the

eigenvalues X2 '' .3'" n" If P is a real n x (n-i) matrix of rank

n - I whose columns are P2' P3'**"Pn' or consist of real and imaginary

parts of p2 , P3"**#'Pn in the case of complex A2, X3,...,)n, then each

p e P has the unique representation

n-1
Pa a eR

Let q, be the unique vector in Rn such that

-10-



q p, ( PlqlRn)

*

q p -0, p 6 P

Then q, is an sigenvector of O(T ) corresponding to the aigenvalue 1.

We denote by {q II the one dimensional subspace of Rn spanned by ql and

by Q the (n- )-dimensional subspace of Rn ' 1 spanned by the eigenvectors

q2, q3 1 ",1 ,% associated with the eigenvalues '2 f ... ,U of V(T0 ) (if

we wre to allow (T) to be complex, , V,..., would be replaced here

by A2 0A3 .. ). Letting Q be the n x (n-I) matrix whose columns are

q 2 , q 3 1.'''qn (or real and imaginary parts) it may be arranged that

Q P - 'n-I

Our requirement

i  , i n 2,3,*oo°,n

guarantees that with

9(t) , Q ((t) - In)P , (2.8)

8(T0) is a nonsingular (n-i) x (n-i) matrix. Evidently we have the

decompos itions

(P }  P - n - {q + Q

Having taken care of the various definitions and assumptions needed, we

I I turn now to consideration of periodic solutions of the controlled system (2.1)

corresponding to controls

u 6 L[0,T ], TI > To

or, more precisely, to restrictions of such controls as explained below. The

theorem which we present below may be proved much more simply when we require

that u S C[0,T 1 ] by invoking the implicit function theorem and,

additionally, a local uniqueness result is obtained in that case. Because of

the method of proof employed, and in the interests of more colorful

-- -. -
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mathematical metaphor, we shall call this the "arrow and target" theorem. It

*will turn out that the proof rests on the intermediate value theorem.

Theorem 2.1. For arbitrarily small positive T, 6, T satisfying

T 4T1 - To, there exists £ - Wr, 5) > 0 such that whenever

lu 1 2 (2.9)Lum [0,Tl

the system (2.1) has at least one solution w(t) satisfying

Iw(t) - x(t) I < 6, 0 e t 4 T 1 , (2.10)

and such that

w(T) w(0) (2.11)

for at least one value of T with

IT - Tol CT < (2.12)

Once w, T corresponding to u have been identified, w, u may be

regarded as a periodic state, control pair by first restricting w and u

to 10,T] and then defining

w(t + kT) - w(t), u(t + kT) - u(t), k - -1, ±2,... . (2.13)

Proof of Theorem 2.1. For simplicity we begin with the equation
w g(w(t)) + H(r(t))u (2.14)

wherein r(t) is a given continuous n-vector valued function defined on

[0,T] and satisfying

Ir(t) - x(t)t'n 1 6, t e [0,T]

x(t) being the periodic solution of (2.1) corresponding to u(t) = 0 which

we have discussed above. This includes, of course, the special case wherein

H(x(t)) H, H constant n x m matrix .

-12-
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Once we have proved the existence of a periodic pair w, u, for this special

case we will be able to describe rather easily the modifications required to

prove the corresponding result for (2.1).

Let u e L2 [0,T I satisfy (2.9) with e yet to be determined, and let

w(t) be the solution of (2.1) corresponding to the control u and the

initial state

w(O) - x0 + p, p e P, Ipi 4 p , (2.15)

for some p > 0 yet to be determined. It is an easy consequence of the

Caratheodory existence and regularity theory (see (G], e.g.) that we can

assume

A
Iw(t) - x(t)U 6 (2.16)

A
for any 6 > 0 by choosing e and p in (2.9), (2.15) to be sufficiently

t

small. Our intent is to keep u fixed and show that we can find p an in
4

(2.15) and T satisfying (2.12) such that (2.11) holds.

Let y(t) be the solution of

(yt) - g(y(t)) + Hlrlt))ult) , (2.17)

y(0) - x 0  ( (2.18)

Clearly y(t) satisfies (2.16), i.e.,

ly(t) - xIt) 1 4 (2.19)
Rn

if c is sufficiently small. Then

w(t) y(t) + z(t) (2.20)

where

A ;(t) - g(y(t) + z(t)) - g(y(t)) , (2.21)

- z(0) - p ( (2.22)

The variational equation associated with the solution y(t) is

k -13-
ITS'



C(t) - G(y(t))C(t) (2.23)

where Glylt)) (y(tl) in the Jacobian of g evaluated along the

- solution y. if we lot 0(t) be the matrix solution of

*(t) - G(y(t))*(t), t 6 E0,T 1] , (2.24)A

*(0) - I (2.25)

* and set

e(t) - Q*(3(t) - I)p , (2.26)

the usual regularity arguments show that 8(t) converges uniformly to 0(t),

given by(2.9), as i T .and hence sup (ly(t) - x(t)E n) tends

"1 [OaT "

to zero. Since 8(T 0) has been seen to be nonsingular, it follows that

*A A -
O(T) is invertible with O(T) satisfying some bound

IV(T)  I B , (2.27)

provided (2.9) and (2.12) hold with C and T sufficiently small.

The "target" of the "arrow and target" theorem is the image, ZTI of the

subspace P C Rn under the map

Z(pT) - z(pT) - p

where z(p,t) - z(t) is the solution of (2.21) corresponding to the initial

state (2.22), i.e., z(p,0) - z(0) - p. We can obtain a parametrized

representation of ZT by writing

A, N
z(p,T) - p - ulp 1 + p e P , (2.28)

p (0) g(x(O)) as noted earlier and (since ^ 6 P) setting

a
A A A 0 ,"

P , (2.29)

n

with P the n x (n-1) matrix described earlier. Then

a1 - q1 (z(pT) - p) * (2.30)

a - Q (z(p,T) - p) (2.31)

-14-

J I II I I i I 1 I Ii i I i



and writing

PSP, 0 S R n-1n-

we see that the Jacobian of with respect to 8 at 8 - 0 (i.e., p - 0)

A
is precisely O(T) as given by (2.26). From this and the implicit function

theorem it follows that Z can be represented, for p near 0 and T near

4 To , as corresponding to the set of points (2.30), (2.31) for which

a, q(CL, T)

1 Awith D of class C near a 0, T - T0 . In fact (2.30) shows that

* -2

(0,To) =q 1 -L (z(pTo) - p)
p q,(pT'0 a8 -aTl)&

AA
= I(O(T) - I)PO(T 0 (2.32)

* - The surface ZT will thus be nearly tangent to the subspace P at p - 0

for small lul, i.e., for y(t) near x(t), and T near T0 , because
(T 0)P - PA for an appropriate (n-1) x (n-I)A and q1P - 0.

The "arrow" of our theorem is the vector x0 - y(T). The "arrow" hits

., the "target" just in case there is a vector p e P and an instant T such

that

x 0 - y(T) - y(O) - y(T) - z(p,T) - pI - z(p,T) - z(p,0) - z(T) - z(0) ,

for then

w(0) - y(0) + z(0) - y(T) + z(T) - w(T) • (2.33)

That such a "hit" takes place is a consequence of the intermediate value

theorem for continuous functions on R . The situation in hand is represented

graphically in Figure 2.1 where . . * . * is the trajectory of .- x(T)

-15-
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for T near Too-~-4- is the trajectory of -O y(T), the

hyperplane P insahown, and the curves-------indicate the outline of a

cylindrical region

Ix - ix - x(T)) (8 d (2.34)
0

for d -4 6, truncated by hyperplanes parallel to P

H X (, Vi p+ p, pOSP, P11X(i y1p 1 
2  -*L}

I I- I

/H

.1z

4T

z 0

.PO

Figure 2.1

The surface Z T depends on u via the dependence of z on y in

equation (2.21). indicating this dependence by ZT~u), we begin by taking

d small enough in (2.34) so that ZT (0) bisects the cylinder into two

regions. This must be the case for d small because the tangent vector to

-16-



x 0 - x(T) at T- To  is pl, while the tangent hyperplane to ZT0(0) at

the origin is P. Next, L and T are restricted so that

*

p -(x x(T)) > 2L, TO - 2T T <T- T

p (x0 -x(T)) < -2L, T + T < T 4 T + 2T

Then we make C, and hence ful 2 , small enough so that x0 - y(T)
Lm[0 T 1 ]

lies in the cylinder (2.34) for IT - TO[ C T and

pl(x 0 - y(T)) > L, To - 2T T < T0 - T , (2.35)

Pi(x 0 - y(T)) < -L, TO + T < T 4 T0 + 2T (2.36)

both of which are possible because y(t) converges uniformly to x(t) as

lul 2 tends to zero. Finally, 6 is further restricted, if

m ,Tnecessary,

so that ZT(u) bisects the cylinder (2.34) when lul[L2 ( . Because
L,[ 1 ]

m

z(0,T) 0, Z(O,T) - 0 and the surface ZT(u) always passes through the

origin. Then - (p,T) can be uniformly bounded for p small and T near

To, using (2.27), (2.32), and, further restricting d if necessary, the

intersection of ZT(U) with the cylinder (2.34) does not meet the ends, H,

of the cylinder for EuL ( C, IT - T0 1 T. Put another way, if
L 10,T I

PI(T) denotes the connected neighborhood of the origin in P which maps into

the cylinder (2.34) under Z(O,T),

Ip1Z(p,T)I < L for lul 2IC C, IT - T0 1 4 T, p 6 P (T) . (2.37)
L 2 0,T10m

It follows that we may unambiguously denote the two components of the cylinder

(2.34) cut out by ZT by C +(T), C'(T), according to whether that component

contains H+  or R-, respectively. For x in the cylinder (2.34) and

To - 2T 4 T T0 + 2T we define

D(x,T) - i dis(x,Z T

-17-



the distance being the distance within the cylinder (2.34) and + being used

in C (T), - in C'(T). Then consider the function D(x0 - y(T),T). From the

continuity of D(x,T) (the proof of which we omit here, but it is not really

difficult to establish) it follows that D(x0 - y(T),T) is a continuous

function of T. From (2.35), (2.36) it follows that D(xO - y(T),T) is

positive for To - 2T < T < To - T, negative for T 0 + T(T 4 To + 2r. From

the intermediate value theorem there exists at least one T in

T - T < T 0 + T such that D0 (xO - y(T),T) - 0, from which it follows

that

x0 '- y(T) 6 ZT

for such T and, as indicated earlier, this shows that there exists w(t) a

solution of (2.14) such that

w(0) - w(T)

and we have the result for the system (2.14).

We indicate only briefly how the result is extended to the system (2.1),

i.e.,

- g(w) + H(w)u ( (2.1r)

The main complication is that when we let

y m g(y) + H(y)u, y(O) - x0  , (2.38)

then, in order that w - y + z should be a solution of (2.1), we must have

z g(y+z) - g(y) + (H(y+z) - H(y))u (2.39)

so that small solutions z(t) of (2.21) do not approximately satisfy (2.23)

but rather the equation

C- [G(y(t)) + Gu (t,y(t))]c (2.40)

where

G(tx) " (H(x)u(t))

u Ox
-18-
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is an n x n matrix function of t, x which, for each x, is a linear

function of u(t). It is not hard to show that

EQ u(t,x)l -c yiu(t)i, t e (0,T], x e c , (2.41)

where C is a compact subset of 0 including a neighborhood of the periodic

solution x(t) and y is a positive constant. If we denote the fundamental

solution matrix for (2.40) which reduces to the identity at t - 0 by

9 (t), then

4 t) - G(y(t))u (t) + G (t,y(t))# (t)
u u U

and the variation of parameters formula applies to give, with 1(t) as in

(2.24),

A
0 ct) - + (0 + ''G (s)ds

- S(t) +t 1(t,slGu(s,y(s))O (s)ds

from which, using (2.40), a very easy argument shows that

lim ( (t) - (t)" ufl . 0 u
lg2
L [0,T

Then all of the arguments set forth earlier for (2.14) apply with 4(t)

replaced by 4 (t), provided luNf 2 is sufficiently small, tou LE[0,T I ]

establish again the existence of p and T so that the solution w(t) of

( (2.1) with w(0) - x0 + p satisfies (2.11). With this we may regard the

proof of Theorem 2.1 to be complete.

The next stop is to establish, rather easily, a certain localization

result for the periodic solutions w(t) resulting from control functions

u(t) with fu 2 small. Let us note, as in (2.19) earlier, that,
t (0,T ]

given any > 0, we can assume
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ly(t) - x(t)I 4 8, t 6 10,T I

where y(t) is now the solution of (2.38), by taking lul C2 C, C
Lm [0,T 1]

" sufficiently small, Then, since x(O) - x(T0 ), we can further assume, given

A > O, that

ly(O) - y(T) 1 4 , T 0 - C T C T0 + ' , (2.42)

provided both c and T are taken sufficiently small.

Now consider the map Z(p,T) - z(p,T) - p with z(p,t) - z(t) the

solution of (2.39) satisfying

z() - p 6 P

Since a(z(p,T) - p)/8p is the restriction of the map T) - I to P, and
u

since p1 6 P is (modulo scalar multiplications) the only null vector of

O(T)- I, it follows that there are positive numbers p and 0 such that

for lu I[2 O,T I

IWlT) - z(O)l Iz(p,T) - pl ) lpI

for IpI 4 2p, To - 4 CT C To + To Then, by taking

<

in (2.42) (which may involve further restriction of e and T) we see that

we cannot have

y(T) + a(T) - w(T) - w(O) a y(O) + z(O) (2.43)

for z(O) - x + p, p 6 P, p < IpI < 2p, since (2.43) would give

y(T) - y(O) - z(O) - s(T)

which is impossible since

Iy(T) - y(O) 1 C A < uip C )IpI 1C WT) - z(O)I

for such p.

-20-
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Equally well, the proof of Theorem 2.1 shows that for small lpl, p e P,

and appropriately selected T > 0, no solution w(t) originating at

w(O) - x0 + p and corresponding to a control u with luL 2 [ e, C
", L (0, T1]

sufficiently small, can have a period T with T in the ranges TO - 2r ( T

< To - T,T + T < T 4 T + 2T. We can put all of this together in the
TO 0

following "localization" result.

Proposition 2.2. If C is sufficiently small we can find positive T and

P such that when Nu 2 e
L (0,TI

(i) equation (2.1) has a solution w(t) periodic with period T and

with w(O) = x(0) + p,

(p,T) e N(p,T) ( (p e P, |p', TO - T 4 T 4 TO + T)

(ii) equation (2.1) has no solutions of period T and initial state

w(0) - x0 + p if

(p,T) e N(2p,2T) - N(P,T)

The localization result is quite important in the study of the optimal

control problem introduced below because it enables us to single out a set of

triples x, u, T which may be confined to a bounded region simply by taking

-U| 2 sufficiently small, rather than by introducing further,
L [0,T]

extraneous, constraints into the problem.

It seems fairly clear that Theorem 2.1 and Proposition 2.2 can be

extended to the general system (1.11) provided that Fu (x,u) remains

uniformly bounded for x e C C o, u e Em, where C is a compact subset of

En  containing the trajectory x(t), 0 4 t 4 To, in its interior.
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We proceed, now, to introduce and study the optimal control problem

referred to in Section 1. For the moment we replace the general cost

. integrand W(xeu) of (1.12) by a less general expression, augmented by a

parameter a,

W(ax) + u Uu

It should not be difficult to extend the work to more general integrands

w( a,x,u).

4Let the system (2.1), i.e.,

x - g(x) + H(x)u, x 6 1 , u 6 1

have the properties set forth preparatory to and in Theorem 2.1 and let x(t)

be a periodic solution with least positive period To of

- g(x)

having the properties developed earlier. Let U be a positive definite

m x m matrix and let W(a,x) be a continuous function of a,x for a )0

and x e 0 CRn such that

W(0,x(t)) - 0, t e [0,T 0] , (2.44)

W(o,x) ) 0, a ) 0, x S 0 , (2.45)

W(a,x(t)) A 0, a > 0, t e [0,T 0 ] . (2.46)

For each trajectory, control and period triple w, u, T with w(t), u(t)

defined on the interval [0,TI], and w(0) - w(T), 0 < T 4 Te, we define the

cost functional

J(O,w,u,T) - ( f W(a,w(t)) + u(t)*Uu(t)ldt (2.47)

We require TI > To  and we denote by 1 the set of trajectory, control and

2
period triples w, u, T, defined for 0 ( t 4 T,, u 6 L,[O,TI, such that

w, u satisfy (2.1) on [0,TI), 0 < T 4 TI, and

w(0) - w(T)
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There may be several, or even infinitely many values of T corresponding to a

given pair w, u. Theorem 2.1 shows that, given the existence of the periodic

solution x(t), with period T0 , corresponding to the control u(t) 1 0

with appropriate assumptions on O(T0 ), M includes at least one triple w, u,

T for every u e L 2[0,T Iwith Rul sufficiently small. We make M
SL 2 [0,TI

m1

into a metric space by defining the distance function

d(wuT= d (R(w),R(w)) + lu-u' 2 + IT- TI
H L [0,T 11

where R(w) = (w = En I w = w(t) for some t e [0,T ]} and dH is the usual

Haussdorff metric on compact sets.

Property (2.46) of the function W shows that if 0 > 0

J(O,x,0,T0) = J0 (a) > 0 ,

and the continuity of W with respect to 0 shows that

lim J (a) - 0
o+0

For a > 0 we define M to be the subset of M for which

J(O,w,uT) 4 J (a)
0

If w, u T e ma, it is clear that

' f u(t) Uu(t)dt J(0) (2.48)

which implies that

2 T J0) T J (a)

lu(t)2dt 4 0 1 0 (2.49)

when i1  is the smallest eigenvalue of the symmetric positive definite

matrix U.

-23-
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The localization result expressed in PWposition 2.2 shows that the set

of all w, u, T in H for which lul 2  4 c may, if e is
L[0,T 1

sufficiently small, be decomposed in a natural way into two components: those

lying in N(p,T) and those lying outside N(2p,2T), there being a triple w,

u, T in N(p,T) for every u in L [0,T with lu 4 e. ThemL [0,T

m 1

importance of this result lies in the fact that it provides us with a priori

bounds on a certain subset of the periodic orbits associated with

2u e L2[0,T of small norm without the necessity of imposing any additional
m TI

* constraints.

Theorem 2.3. Let e > 0 be sufficiently small and let p, T be such

that Propsition 2.2 applied for lul ' 4 c. Let o > 0 be small-PO L [ 0,T I
enough so that (cf. (2.49)) 1

J0(a) < ( • (2.50)
0 T1

A A A
Then there exists at least one element w, u, T in N(p,c) such that

^^^

J(a,w,u,T) 4 J(ayw,u,T), w,uo T e N(p,T)

Proof. The Caratheodory regularity theory referred to earlier allows us to

see that if e > 0 is sufficiently small and w, u, T is in N(p,T) with

lugL2 [ e, then there exists B() > 0 such that
L [O,T1 ]

m 1

lw(t) - x(t) 1 B(c), t e [0,T 1 )

Moreover,

lim B() - 0
£40

In particular, then, there is some M > 0 and a closed subset

C C o nl fw I iws 4 m such that

w(t) e c, t e (0,T 1 ]
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for such w, u, T. Using the Schwarz inequality we quickly see that

Ew(t) - w(t+6t)l - ft+8t (g(w(s)) + H(w(s))u(s))dsl°t

g1
6 t + h I f1 t +

t lu(s)Ids
1 t+ t 12ds)A/J + 1/2

gla t  + hl "'tt lu(s)l 2 o)/ "t 1 de)1/

+ 6t1/2
' g1 t + h1 Cat

where

g1  sup Igl(w)I,
weC

h, M sup IH(W) .
wec

* 'Since (2.50) is true, (2.49) shows that we may assume a minimizing sequence

Wk, Uk, Tk such that (starting with k - 2 to avoid confusion with T,

already defined)

t.o Wk U k' Tk e W(p,T), k - 2,300",,

T 20 0 < C , k 2,3 ,° *,

lim J( wk,UkTk) inf J(CI,w,u,T) ( (2.51)
k+ m w,u,TeN(p,*T)

From the boundedness and equicontinuity of the wk , the boundedness of the

Tk  and the weak compactness of {u e L2 [0,T I ] I lul 2 T I we
m m 0,T

conclude that we can find w, u, T in N(P,'T) and a sabsequence of

(wk,UkTk} which, for convenience, we will still call (wk,UkTkl such that
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ii. (sup IW (t) - A(t),) - 0 , (2.52)
kw teT1 I!

A
lim Tk - T (2.53)
k4 0

and {uk } converges weakly to U in L(0,T). Combining (2.52) and (2.53)

it is clear that

TM  T

A 2* From the weak convergence of fu.}7  to u in L [0,T] we Immediately have

A2 Athe weak convergence of {uk ) to u in L [0,T]. Then, since for any

2v e L0,TII

1fk v(t)*ukt)dti 14 (fk.,(t)It)1

x Tfk *(t)I 2 dt)1/2 4 envnLEC Tk]

2 2 (4,
m "k

(or L2[TT] if T < T) and, as is well known
m k. k

rn jk f(t)dt 0
Tk T

for any Integrable f(t), we conclude that if the uk(t) are redefined to be

zero in [TkTI], k - 2,3, " and U(t) is redefined to be zero in [T,T1] ,

it will stiXl be true that (uk) converges weakly to la. Then, using a

result in [H] (Theorem 8, p. 209) we know that

0U(t)Uu(t)dt c limTk *
0 t k+ uk(t) Uuk(t)dt
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and we see that

AA
J(q,w,u,T) 4 uir J(a,wkeuk,Tk)

k a

and hence, from (2.51), that

*A A A.

J(Cwu,T) - inf J(o,w,u,T)
w, u, TeN (p, T)

- lira J( o,wk,u.,Tk)
k~cok

and the theorem is proved.

It will be seen in the course of the discussion in Section 3 that the

above optimal control formulation is not adequate for all purposes. In some

cases we need to take a fixed cost functional

1 T
J(x,u,T) = T f0 (W(x(t)) + u(t) Uu(t)ldt

where, assuming the system (2.1) now augmented, as in Section 1, with a

parameter e, viz.:

x = f(x, ,u) (2.54)

or

" - g(x, ) + H(x, O)u , (2.55)

we suppose that W(x(t)) 0 on a T-periodic solution x(t) of the

"uncontrolled" system (2.54) or (2.55) with u = 0 and 6 - 8, where is

some minimal value of the parameter V, and that

W(x) > 0, x 0 (xZ(t) I o it•

The optimal solution for 8 - 6 is clearly x(t), 0 4 t 4 T. One wishes to

modify Theorem 2.3 to establish the existence, locally, of an optimal solution

for e in some neighborhood of 8.
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The only modifications that are at all significant here involve

modification of the localization result, Proposition 2.2, so that it applies
-i

for ,uIl2 sufficiently small and 0 sufficiently near 0 and

m

replacement of the a priori bound (2.48) on u by

T
10 u(t)*Uu(t)dt (- f 0U Wx(t))dt

where x (t) is some periodic solution of

t) - f(x (t),I,0)

lying near the periodic solution x(t) with period T near T- the

existence of which is established much as in Theorem 2.1, except that the

proof can be greatly simplified now, using the implicit function theorem

since, regarded as a control, p is now (trivially) continuous in t. In

fact, x and T are unique in this case. The rest of the argument is

almost word for word the same as in Theorem 2.3 above and will not be repeated

here.
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3. Necessary Conditions for Optinality, Computational Considerations

In the present section we consider the system

nx-f(x,u), x e o c- z, u e Em (3.1)

wherein it is assumed that f(x,u) is continuously differentiable with

respect to both x and u over the range indicated. We suppose that x(t)

A

is a periodic solution of (3.1), with least positive period T, which

corresponds to the control U(t) on 10,T]. For the moment we make no

A

further assumptions on f but restrict attention to piecewise continuous u

and piecewise continuous variations 6u from u, but fairly minor

modifications allow us, in the case of

x - g(x) + H(x)u, x e o c En , u e E , (3.2)
A

the system treated in Section 2, to also admit the possibility that u and

the variations 8u are just square integrable.

A number of authors have considered necessary and sufficient conditions

for periodic systems ((I], [J], (]p (L]). We do not develop the conditions

here because they are new - they are not - but to allow us to make appropriate

reference later in this section. We seek necessary conditions in order that

the control u should afford a local minimum (at least) for the cost

functional

J(xuT) - v(x(O)) + - w(x(t),u(t))dt , (3.3)
TO0

where v(x) and w(x,u) are continuously differentiable in x, (x,u)

respectively, for x e o z n , u e Lim. In (3.3) it is assumed that x(t) is
* ~A A

a periodic solution of (3.1) having period near the period T for x(t):

IT - , o

A
that x(t) lies near x(t) in the sense that

1x(t) - 4(t)l 4 9, 0 4 t 4 sup(Tv)

for some E > 0 and that
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. for some 8 > 0. in the came of (3.2) this can be relaxed to

AA-f Eu-m2 , 8, T1 ) T, )

L (OT 1

Let &(t ) be piecowise onuous for 0 .4 < Ti, T1 > To We Consider

controls

u(t) - u(t) + a b(t), a real , (3.4)

AA

where Q4(t) is extended outside [0,T] by peri~odicity as reqluired.

We suppose the-time parameter normalized in such a way that u(t) is

A A
continuous at t -0 (equivalently at T) and we set

r(t) r(x(t), u(t)) - (X(t), ( 0 T . (3.5)

As earlier in the paper, we denote by O(t,s) the matrix solution of

d4ts) - F(t)(ts), 9(ss) - I 
do

and we abbreviate *(t,O) by O(t).

A
The variational theory for a controlled periodic solution x(t) in

somewhat different from that for an uncontrolled periodic solution x(t) as

discussed earlier in this paper. If we let

p - f(A(o), UCO)) (3.6)
A

it is no longer necessarily true that p is an eigenvector of 9(T)

corresponding to an eigenvalue A,1 - 1. To see why this is so, consider,

e.g., the case were u st) is periodic and of class C on (0,T]. Let

p(t) " x(t) ,

Differentiating (3.1) gives

A
= W(t)p + H(t)u(t) , (3.0)

where
(t) - (A(t), A () A ) A(t))

so that
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p(t) - f(t)p(O) +f0t (ts)H(s)U(s)ds

A ~A A

Since p(T) -x(T) . x(O) - p(O) - p, we have

A

A T A

(I - f1T))p - fo #1T,M)H(8)uls)ds 13*91

and p is an eigenvector of f(T) corresponding to the eigenvalue I if and

only if the right hand side of (3.9) turns out to be zero. Of course, in the

uncontrolled case the right hand side is automatically equal to zero.

We are going to proceed under the following

A ion: Zither (i): p, given by (3.6), is the unique eigenvector of

A
O(T) corresponding to the eigenvalae 1, which is simple, or (ii) *(T)

has no eigenvalue equal to 1.

A

It is not particularly difficult to treat the case where $(T) may have

a simple eigenvalue 1 with corresponding sigenvector different from p but

we shall not do so here.

In case (i) the study of perturbed periodic solutions corresponding to a

SA

small perturbation 6u(t) from the control u(t) is just Theorem 2.1. In

case (ii) one can establish the following

A

!wsiion .1:If t(T) has no eigenvalue equal to 1 then,

':.4 corresponding to each piecewise continuous perturbed control

u(t) _ A(t) + a &(t)

0 with jal sufficiently small, there is a unique perturbation 6x(O) of the

initial state so that the solution x(t) of (3.1) corresponding to the

control u(t) and the initial state x(O) - x(0) + 6x(O) remains periodic

A
with period T.

We omit the proof. A comparable result can be obtained for (3.2) with

du in L2 10,T)].
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To proceed, we consider a perturbed control (3.4), which we take to be

piecewise continuous in this discussion, and we let

x(t,a) - O(t) + a 8x(t) + o(l0l), 101 + 0 (3.10)

be a perturbed periodic solution near x(t) (uniqueness fails under case (ii)

of our Assumption even with piecewise continuous controls) with period

A
T(G) = T + a 6T + o(lal), la, + 0

In (3.10) dx(t) is a solution of the variational equation (cf. (3.5), (3.7),

(3.8))

6;(t) - F(t)6x(t) + H(t)Ou(t) (3.11)

for 0 ( t < T, and the equation is extended outside this range, as required,

Ausing the T periodicity of x(t) and U(t).

Denoting the gradients of v, w with respect to x, (x,u),

av aw aw
respectively, by T, y-, 3-, and treating these as row vectors, it may be

seen that

J(x(e,M), u(.,a), T(0)) (Ax,u,T)

{V (A(o))Sx(O) + -j x (A(t), A(t))8x(t)

T

aw A1 M ()d
+ r((t), u(t))8u(t)dt + (- f- , w(x(t), U(t))dt

T2

+ _ w(C(o), A(O))J)T} Q + o(lal), C + 0 (3.12)
T

wherein we have used periodicity to see that

WA(A) A A)_ W(A(0), Tx UMw(x(T),uT)

Now the variational derivatives 8u, 8x and 8T are not independenti

the last two are determined by 8u and the normalization of 8x(0). In order

to be able to express the cost variational derivative explicitly in terms of
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Su, rather than implicitly through dx and 4T, one introduces a solution

At) of the "adJoint system"

A* awt))

1 f (r ( (t), 1t (3.13)T

The bounda~ry conditions will be specified shortly. we find then that

A

AA

X + - X(t))xxd - (31(4)(t xt))dt

A
(cf. (3.11), (3.13))T [(-Xltl Fit) + - NM1I1 u(tl18xltl

T

A

+ t)(r~)6~t)+ (T) + ~t))] t (0

j *1 j o~ ())"~t~t (d14

- (t) H(t)8u(t)dt + I f x W t), ^~)8~~t(.4

0i A 0 A A

T

To first order, the periodicity requirement

A
Tx(T+ T) - AM

may be replaced by the condition

6X(T) + 0 ()T - 8x(0)

and then, since

(T= ~() u(T))

=f((o), U(Ol)

we have

8x (A ) + f (A ( 0), A ( ) x( ) .( . 5

Using (3.14) and (3.15) in (3.12) we see that
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4W
r1-" lx°'), ulrl), Tlalla=0

A
-!.1 1o), uC1o)) A J! W(l(t), u(t))dt}oT

0 ' Ku* (xt) u1t) AMt H(t)]Su(t)dt .(3.16)

T

The dependence on W(o) is annulled by imposing the boundary condition

A(T) - X(O) + 2))* - 0 . (3.17)

At this point we have to consider two possibilities, corresponding to the

two cases delineated in the above Assumption. If case (i) obtains, f(T) has

a simple elgenvalue of 1. Then the fundamental solution matrix

* -1T(t) = (O(t-)) ,

obeying

-- =t -F(t)*T(t)dt

* is such that 1() has an eigenvalue equal to I and

has a one parameter family of T-periodic solutions which we may represent in

A.
the form 0)4(t). Given a solution A(t) of 0.13),.(3.17)

also satisfies (3.13), (3.17) for every value of 0. Then we may expect to be

able to select 0 (with suitable non-degeneracy requirements) so that X(t)

also satisfies
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A
A*A 1fAO A() WA() A Ii

"(T) *f(x(0), u(0)) - 1 w(x(0), u(0) + 1-2 J0 w(X(t), u(t))dt - 0 . (3.19)

T T

With A(t) so chosen, we see from (3.16) that dj/da - 0 for all 8u(t)

just in case

A~t)ZH(t) - r u (x(t), u(t)) -0, t T [0,T] . (3.19)

T

If case (ii) obtains we have noted that we can find perturbed periodic

solutions for which 6T - 0. This also annuls the second term in (3.16) and

enables us to conclude that (3.19) must hold. But, in case (ii) still, it is

also possible, for each 8u and a sufficiently small in (3.4), to find

perturbed periodic solutions x(t,Q) near x(t) with periodic T + a 6T,

8T 0 0 given in advance (this is true because (cf. (3.15)) we can always

solve

A A
(#(T) - I)8x(0) + f(x(0), u(0))ST - 0

in case (ii)). Assuming (3.19) already established as noted, dJ/da reduces

to the second term in (3.16) and we conclude that condition (3.18) must, in

fact, hold in this case also.

av A
It will be observed that if y- W0)) 0, (3.17) becomes

A
X(T) - A(M) = 0

A
so that X(t) is periodic with period T.

It is customary to refer to

H(A(t), x(t), u(t), T)

* 1 (3.20)
A M(t) f(x(t), ut)) -- w(x(t), ut))

as the Hamiltonian for this optimization problem. The condition (3.19) is

3 Xt At)At A [OA

u (A(t), x(t), u(t), ) - 0, t e [0,T] . (3.21)

We have the following result.
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A A A A
Propsition 3.1: MAW, x(t), u~t), T) is constant for t e [0,T].

Proof. From (3.5), (3.8), (3.20) we have

d_ A(~) A A j*f(* A ) At)
= H(X~t),x(t), A(t), T) X~)fxt) ut)

* 1w At) At)

T

**13 At) A A)

T

* 13w A A A
+ 1)(t) F(t) + -ij (x(t), u(t))x(t) 0

T

When X(T) - M(O), (3.19) will ordinarily give q(T) Ato) and, since

A A
x(T) - (O), (3.18) becomes

A
A() At) ) 1 f~ OA,

If we let

10Alj~t - x)t), t 8 [0T]

A

we have, for t e to, T],

- * 3w A A (3.22

ay3w A A t )
u(t) H1(t) - _ii (X(t), ut) 0 ,(3.23)

where

H(Ij(t), x(t), u(t)) p (t) f(x(t), u(t)) -w(x(t), u(t)) . (3.25)
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Moreover, (3.20) shows that, for t e o,T]
-Ut) At) A A AA
H(1(t), x(t), u(t)) + v(x(O)) J(x,u,) (3.26)

In this context (3.17) becomes

A A 3 V A
P(T) - P(0) + T ((0)) - 0 (3.27)

and (3.18) is now

A

A *T A A(x), uCO)) w(x(O), I + 0 w(A(t), u(t))dt - 0 . (3.28)A +
T

The necessary conditions, modified in this way, are somewhat easier to work

with because the period T occurs only in the equations (3.27), (3.28) and

not in (3.22) (cf. (3.13)).

*We summarize:

ATheorem 3.2: Let x(t) be a periodic solutions of (3.1) corresponding to

A A
the control u(t) with least positive period T. If P(t) obeys the

differential equation (3.13) and the conditions (3.27) and (3.28), a necessary

* A A A
condition in ordr that x, u, T should afford a local minimum for J(x,u,T)

is

OH1 A A

J.
"W (At-,,() (0(t),xe),[t)

_d* 4Aw A A

*1_ = (t) H(t) - u (x(t),u(t)) = 0, t 8 [0,T] . (3.29)

In this case

J(x,u,T) H (I,(t),x(t),-(t)) + v(x(0)), t e A0,T .

Very little needs to be changed in the development which leads up to

tA 2C A
Theorem 3.2 in order to permit u to be a function L 2[0TJ in the case of

the special class of systems (3.2). In fact, the class is selected so that

with controls u(t,G) as in (3.4), but u(t), 8u(t) now in L2 [0,T], the
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resulting solution x(t,G) still has the form (3.10), vith Sx(t) satisfying

(3.11). For general functions f(x,u) it is not easy to see that this is the

case without making some rather technical assumptions on f to account for

the possibility that, while ISuO in L 10,T] might be small, Su(t) might

still assue arbitrarily large values. The form (3.2) can be replaced by

af
various boundedness assumptions on I-but we elect not to pursue this here.

AA

normalized in such a way that 0 is a Lebesgue point for u, with the effect

A
that -(0) is, indeed, equal to gx(0 + H(^x(0))O(0), so that (3.15)

A
appropriately modified, still makes sense. (of course uMt turns out in

nearly all cases to be smooth and periodic.)

it is not generally very easy to prove the existence of solutions of the

equations constituting this set of necessary conditions. However, under the

circumstances which correspond to Theorem 2.3 it is possible to rove the

existence of a unique solution (in a certain sense) for small values of the

parameter 0, provided we adjoin to (2.44), (2.45), (2.46) the further

condition that

aw (~~) :0 +OT1(.0

and the function v(x) appearing in (3.3) satisfies certain requirements,

'1 about which we will have more to say below. Let us notice first of all that

when v(x) R0 there is no possibility of a unique min~imum for the cost

functional (3.3) under the stipulated circumstances because translation by a

fixed ST along the periodic optimal trajectory 4x(t), P1(t) ((3.27) shows

P1(t) to be periodic when v(x) :-'0) yields a new trajectory with the same

cost as well as a new set, strictly speaking, of solutions of the necessary

conditions. This sort of non-uniqueness is not very interesting, of course,
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and it is customary and convenient to rule it out by imposing an appropriate

normalizing condition on the initial state x(O). Letting (cf. Section 1)

p - x(O) - f(x(O),O)

A
one can require, for example, that a nearby optimal x(t) should satisfy

p*(2(O) - x(o)) - 0 (3.31)

thereby confining the initial state 2(0) to an (n-1)-dimensional hyperplane

transverse to the nominal orbit x(t). Computationally it is preferable not

to enforce (3.31) as an explicit constraint but, instead, to use for v(x) a

function such as

A 2
v(x) - (p (O(0) - x(0)))

- (0(0) - x (O) - x(0)) (3.32)

In obtaining the least possible cost for (3.3) one automatically obtains the

A (VA()_0Speriodic x(t) which satisfies (3.31) and, in the end, (x(0)) - 0 50

that (3.27) applies to show Vt) to be periodic.

Provided a correctly constructed normalizing v(x) is used as indicated

above, it is possible to use the implicit function theorem to construct

A
x(t), M(t), near x(t), 0, satisfying the necessary conditions set forth in

Theorem 3.2. One takes x(0), p(0) to lie in a small neighborhood of x(0),
A

A
0. Then, via solution of the differential equations (3.1), (3.13) with U(t)

determined by (3.19), the vectors

A A A
x(T) - x(O) , (3.33)

V(T) - () + T)) (3.34)

and the scalar quantity (cf. (3.28))

A
A A + ()) 1 w((t),
H( x u(x A t)x (t))dt (3.35)H(U(0),x(0),u(0)) + -x(0Jo (3.3J0

T
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are seen to constitute a (2n+1) dimensional vector function of x(0), P(O),

T and any relevant parameters, such as 0 of Theorem 2.3 or the parameter

0, as in the discussion of the alternate problem following Theorem 2.3. The

A A
Jacobian of (3.33), (3.34), (3.35) with respect to x(0), P(0) and T can be

computed with the aid of the variational equations and under appropriate

circumstances (e.g. the cost functional has the form discussed in Theorem 2.3,

(3.30) holds and v(x) is defined as in (3.32)) one can show that this

Jacobian is nonsingular when 0 - 0 (or, depending on the problem, when

aA
=0) and unique x P(), T can then be inferred for a (or P)

sufficiently small. We will not go into detail on this as it will appear

elsewhere and would lead us much too far astray here.

The computational version of the above is the simple Newton's method for

-' solving the equations obtained by setting (3.33), (3.34), (3.35) equal to

zero. Implementation requires numerical integration of the variational

equations over an interval [0,Tkl, where Tk is the latest approximation to

the period 4 in order to be able to compute the Jacobian of (3.33), (3.34),

(3.35) with respect to the current initial conditions for xk' Pk and the

period. Just as noted above, it can be established that this procedure is

locally convergent in certain cases. However, this method, while

theoretically useful and appealing in its simplicity, suffers from a number of

disadvantages as a computational procedure. The necessity of integrating the

variational equations to obtain the Jacobian matrix is one such disadvantage

to begin with, but more serious is the frequent numerical instability of the

procedure. In most cases the periodic solution x(t), corresponding to

u(t) = 0, that one begins with, is asymptotically stable. The corresponding

variational system is a time varying periodic system whose characteristic

exponents have negative real parts. But the dual variational system for the

-40-
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adjoint variable P (or A) has characteristic exponents which are the

negatives of those of the variational system for x(t). Thus the variational

system for P (or X) has solutions which may grow very rapidly. This means

that it is often very difficult to accurately compute the part of the Jacobian

corresponding to the equation (3.34). This has been a serious limiting factor

in our computational experience thus far.

While theoretically less rapidly convergent, the steepest descent method

offers much in the way of improved performance from the standpoint of

* numerical stability, primarily because the state equations and adjoint

equations are integrated in opposite directions to take advantage of their

differing stability characteristics. We will describe briefly, one step of

such a procedure.

We shall suppose that xk(t), uk(t) form a periodic trajectory - control

pair for (3.1) with period Tk. As we do not require, ab Initlo. any

continuity for uk, the periodicity refers to the trajectory xk(t). With

x(t) - xk(t) available, one proceeds to compute a solution Mt) of (3.13).

Corresponding to the two cases admitted under the Assumption above, one

follows two routes. If case (i) applies, Mk(t) is determined so that it also

satisfies (3.28). Then setting

3 W A A
au~t - H(t) 'Mktt) -ru (x(t),u(t)) (3.36)

r gives (cf. (3.16)) dJ/dG < 0 (if (3.23) does not already hold for xk* ,k).

For small positive a we let

k+1 ( t ) - uk(t) + a au(t), t e [O,T k

Xxtension of Su k(t) outside [O,TkJI where required, can be accomplished

from (3.36) and we may assume this has already been done for uk(t). Then we

determine x.k(0) and ST k so that xk+l(t), the solution of (3.1) with
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initial state Xk(O) + 6xk(0) and u(t) - Uk+l(t ) satisfies xk+I(Tk +

6Tk ) - xk+,(Tk+,) - xk+1(O). if a > 0 is sufficiently small one can show

that the coat associated with Xk+1, Uk+ 1 will be smaller then that

associated with Xk, uk. If case (ii) applies Pk is only required to

satisfy (3.27), 6uk is selected as in (3.36), and we let 8Tk - a times the

quantity on the left hand side of (3.28)1 we will again see from (3.16) that

dJ/da < 0. This defines the new period t - T + Tk  and we proceed# as
k+1 k

we may in case (ii), to find xk+l, corresponding to the control Uk+j,

having precisely the period Tk+l. Again the cost associated with xk+l, Uk+i

will be reduced, as compared with xk, uk, if a > 0 is sufficiently small.

The above procedure is continued until the necessary conditions are

satisfied. The integrations necessary to determine uk(t) are always carried

out in reverse time (as compared with those for xk(t)) for the sake of

stability. The above description is very rough and a number of refinements

remain to be delineatedl for example, how do we treat the situation which

obtains when case (i) is very nearly, but not quite, true. This is not the

place to treat such questions.

While case (ii) may be considered generic for our problem, case (i) does

arise in significant instances; e.g. with a cost functional (2.47), satisfying

(3.30), the initial step away from the uncontrolled solution must be made

under case (i) circumstances.

An Example. Initial computational experiments have been carried out with the

second order scalar system

x + (-+ .1(x)2x + x u u (3.37)

-42-



p-I

with the parameter 8 in the range 0 ( 8 ( .6 with the objective of

amplitude suppression. The uncontrolled system has a self-excited oseillation

with amplitude A(8) shown by the solid curve AMe) in Figure 3.2, the whole

orbit for e - .6 being shown by the closed solid curve in Figure 3.1.

*Initially we worked with a cost functional of the form

T [O(x(t)2 + (x(t))2) + u(t)2]dt (3.38)

first computing the uncontrolled orbit, which is optimal for a - 0 and then

increasing a in small increments. The computational method used was the

Newton method described earlier. The cost functional (3.37) has the form

discussed in Theorem 2.3. It proved unsatisfactory, however. In a very

narrow range of positive values a controlled periodic solution of smaller

amplitude was obtained but it "popped", like a bubble, for a w .023. The

word *popped" is used advisedly because we believe the disappearance of the

solution near this value of a is indeed due to mathematical causes similar

to those which are operative in the bursting of a bubble or the stretching of

a soap filml the stability of the initial uncontrolled solution manifests

itself initially - a finite amount of control energy is required just to move

away from this initial solution. Beyond a certain point, however, a minimal

cost solution of positive amplitude no longer exists - the origin is the only

(degenerate) solution. We are fairly well satisfied that the optimal solution

does, in fact, disappear in "mid-air" rather than collapse continuously toward

the origin - not only by numerical results but also by related theoretical

considerations which we shall not go into here.

Better success was achieved by following the alternate schema suggested

in the material which follows Theorem 2.3 in Section 2. We used a fixed cost

functional of the form
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! o I(R(t)2  a2 )2 + (u(t)) 2 dt (3.39)

where

2 2 * 2~~R(t) 2  (xWt))2 + Wxt))

and a is the average amplitude of the uncontrolled solution when 0 - .4.

The condition W(x(t)) - 0 (cf. (2.55) pp) is not quite satisfied in this

case but the uncontrolled orbit is so nearly circular that the discrepancies

have negligible effect. When 8 - .4 there is no noticeable modifications of

the orbit but, as e is increased the effect of the optimal control policy is

more and more pronounced, producing the modified amplitude curve A (e) shown
c

by the dashed curve in Figure 3.2 and, for 9 = .6, the modified orbit shown

as a dashed, closed curve in Figure 3.1.

The extreme "fragility" of the Newton method became apparent in these

computations whether the parameter was a in (3.38) or e in (3.37) in

connection with (3.39), it was necessary to change it in extremely small

increments to avoid numerical "blow-up" - primarily due to the instability of

the adjoint system as one integrates in the positive t direction.

In future work we hope to use the steepest descent method outlined here

to compute optimal controls and modified orbits for a system representative of

the wing - air system described in Section 1 and shown in Figure 1.2. The

difficulties already noted for (3.38) indicate that the use of the Newton

method would be almost hopeless in this case.
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